Essential Self-Adjointness and the $$L^2$$-Liouville Property
نویسندگان
چکیده
We discuss connections between the essential self-adjointness of a symmetric operator and constancy functions which are in kernel adjoint operator. then illustrate this relationship case Laplacians on both manifolds graphs. Furthermore, we Green’s function when it gives non-constant harmonic is square integrable.
منابع مشابه
Essential self - adjointness
1. Cautionary example 2. Criterion for essential self-adjointness 3. Examples of essentially self-adjoint operators 4. Appendix: Friedrichs' canonical self-adjoint extensions 5. The following has been well understood for 70-120 years, or longer, naturally not in contemporary terminology. The differential operator T = d 2 dx 2 on L 2 [a, b] or L 2 (R) is a prototypical natural unbounded operator...
متن کاملEssential Self–adjointness and Global Hypoellipticity of the Twisted Laplacian
A scale of Sobolev spaces is introduced to measure the global hypoellipticity of the twisted Laplacian. The essential self-adjointness of the twisted Laplacian is established and the domain of the unique self-adjoint extension is determined in terms of the Sobolev spaces. The global hypoellipticity of the twisted Laplacian in the Gelfand–Shilov spaces is also proved. 1. The twisted Laplacian Le...
متن کاملOn the Essential Self-Adjointness of Anti-Commutative Operators
In this article, linear operators satisfying anti-commutation relations are considered. It is proven that an anti-commutative type of the Glimm-Jaffe-Nelson commutator theorem follows.
متن کاملEssential Self-adjointness in One-loop Quantum Cosmology
The quantization of closed cosmologies makes it necessary to study squared Dirac operators on closed intervals and the corresponding quantum amplitudes. This paper shows that the proof of essential self-adjointness of these second-order elliptic operators is related to Weyl’s limit point criterion, and to the properties of continuous potentials which are positive near zero and are bounded on th...
متن کاملAmenability and the Liouville Property
We present a new approach to the amenability of groupoids (both in the measure theoretical and the topological setups) based on using Markov operators. We introduce the notion of an invariant Markov operator on a groupoid and show that the Liouville property (absence of non-trivial bounded harmonic functions) for such an operator implies amenability of the groupoid. Moreover, the groupoid actio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fourier Analysis and Applications
سال: 2021
ISSN: ['1531-5851', '1069-5869']
DOI: https://doi.org/10.1007/s00041-021-09833-2